首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58046篇
  免费   8841篇
  国内免费   2764篇
电工技术   2563篇
技术理论   5篇
综合类   2945篇
化学工业   13807篇
金属工艺   3277篇
机械仪表   2089篇
建筑科学   5057篇
矿业工程   1945篇
能源动力   3038篇
轻工业   6791篇
水利工程   1623篇
石油天然气   2889篇
武器工业   280篇
无线电   5324篇
一般工业技术   6932篇
冶金工业   2974篇
原子能技术   602篇
自动化技术   7510篇
  2024年   128篇
  2023年   1611篇
  2022年   2826篇
  2021年   4285篇
  2020年   2610篇
  2019年   2560篇
  2018年   2575篇
  2017年   3105篇
  2016年   4096篇
  2015年   4528篇
  2014年   4710篇
  2013年   4664篇
  2012年   3540篇
  2011年   2964篇
  2010年   2387篇
  2009年   2355篇
  2008年   2209篇
  2007年   3273篇
  2006年   3406篇
  2005年   2875篇
  2004年   1844篇
  2003年   1745篇
  2002年   1167篇
  2001年   649篇
  2000年   487篇
  1999年   457篇
  1998年   261篇
  1997年   235篇
  1996年   262篇
  1995年   192篇
  1994年   221篇
  1993年   126篇
  1992年   112篇
  1991年   106篇
  1990年   120篇
  1989年   109篇
  1988年   70篇
  1987年   66篇
  1986年   73篇
  1985年   63篇
  1984年   66篇
  1983年   41篇
  1982年   36篇
  1981年   37篇
  1980年   47篇
  1966年   25篇
  1964年   34篇
  1962年   64篇
  1959年   23篇
  1955年   22篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
This study investigated the zinc oxide (ZnO) based heterojunction photocatalysts for improved hydrogen production from water splitting. A sol-gel route was adopted to produce terbium (Tb) and samarium (Sm) co-doped ZnO/CNTs composites where CNTs worked as a support material. The built-in redox couples of lanthanides in co-doped TS-ZnO/CNTs composite showed higher hydrogen evolution activity than Sm doped (Sm-ZnO/CNTs) and Tb doped (Tb–ZnO/CNTs) photocatalysts. When triethanolamine was utilized as a sacrificial agent, the TS-ZnO/CNTs photocatalyst result in a remarkable hydrogen evolution rate of 2683 molh?1g?1 under visible light illumination. The optimum photocatalyst also showed high stability over five successive hydrogen evolution cycles. The better hydrogen evolution rate with TS-ZnO/CNTs was referred to its fine particle size, high reactive surface area, small optical band gap, suppressed reunification of charge carriers and built-in redox couples. The photocatalytic mechanism, involved in water splitting with TS-ZnO/CNTs photocatalyst, is also deduced in this study. This study can stimulate the attempts towards construction of lanthanides based co-doped semiconductor photocatalysts for efficient hydrogen evolution.  相似文献   
52.
Transition metals sulfide-based nanomaterials have recently received significant attention as a promising cathode electrode for the oxygen evolution reaction (OER) due to their easily tunable electronic, chemical, and physical properties. However, the poor electrical conductivity of metal-sulfide materials impedes their practical application in energy devices. Herein, firstly nano-sized crystals of cobalt-based zeolitic-imidazolate framework (Co-ZIF) arrays were fabricated on nickel-form (NF) as the sacrificial template by a facile solution method to enhance the electrical conductivity of the electrocatalyst. Then, the Co3S4/NiS@NF heterostructured arrays were synthesized by a simple hydrothermal route. The Co-ZIFs derived Co3S4 nanosheets are grown successfully on NiS nanorods during the hydrothermal sulfurization process. The bimetallic sulfide-based Co3S4/NiS@NF-12 electrocatalyst demonstrated a very low overpotential of 119 mV at 10 mA cm?2 for OER, which is much lower than that of mono-metal sulfide NiS@NF (201 mV) and ruthenium-oxide (RuO2) on NF (440 mV) electrocatalysts. Furthermore, the Co3S4/NiS@NF-12 electrocatalyst showed high stability during cyclic voltammetry and chronoamperometry measurements. This research work offers an effective strategy for fabricating high-performance non-precious OER electrocatalysts.  相似文献   
53.
Nickel-based catalysts have attracted tremendous attention as alternatives to precious metal-based catalysts for electrocatalytic hydrogen evolution reaction (HER) in virtue of their conspicuous advantages such as abundant reserves and high electrochemical activity. Nevertheless, a great challenge for Ni-based electrocatalyst is that nickel sites possess too strong adsorption for key intermediates H1, which severely suppresses the hydrogen-production activities. Herein, we report a hierarchical architecture Cu/Ni/Ni(OH)2 consisting of dual interfaces as a high-efficient electrocatalyst for HER. The Cu nanowire backbone could provide geometric spaces for loading plenty of Ni sites and the formed Ni/Cu interface could effectively weakened the adsorption intensity of H1 intermediates on the catalyst surface. Moreover, the H1 adsorption could be further controlled to appropriate states by in-situ formed Ni(OH)2/Ni interface, which simultaneously promotes water adsorption and activation, thus both Heyrovsky and Volmer steps in HER could be obviously accelerated. Experimental and theoretical results confirm that this interface structure can promote water dissociation and optimize H1 adsorption. Consequently, the Cu/Ni/Ni(OH)2 electrocatalyst exhibits a low overpotential of 20 mV at 10 mA cm?2 and an ultralow Tafel slope of 30 mV dec?1 in 1.0 M KOH, surpassing those of reported transition-metal-based electrocatalysts and even the prevailing commercial Pt/C.  相似文献   
54.
Oxygen evolution reaction (OER) is a key process involved in many energy-related conversion systems. An ideal OER electrocatalyst should possess rich active sites and optimal binding strength with oxygen-containing intermediates. Although numerous endeavors have been devoted to the modification and optimization of transition-metal-based OER electrocatalysts, they are still operated with sluggish kinetics. Herein, an ion-exchange approach is proposed to realize the structure engineering of amorphous P–CoS hollow nanomaterials by utilizing the ZIF-67 nanocubes as the precursors. The precise structure control of the amorphous hollow nanostructure contributes to the large exposure of surface active sites. Moreover, the introduction of phosphorus greatly modifies the electronic structure of CoS2, which is thus favorable for optimizing the binding energies of oxygenated species. Furthermore, the incorporation of phosphorus may also induce the formation of surface defects to regulate the local electronic structure and surface environment. As a result of this, such P–CoS hollow nanocatalysts display remarkable electrocatalytic activity and durability towards OER, which require an overpotential of 283 mV to afford a current density of 10 mA cm?2, outperforming commercial RuO2 catalyst.  相似文献   
55.
Surface reconstruction produces metal oxyhydroxide (1OOH) active sites, and promoting surface reconstruction is essential for the design of OER electrocatalysts. In this paper, we reported that a large amount of active NiFeOOH was generated in-situ on the surface of nickel-iron sulfide selenide, thus exposing more active sites and efficiently catalyzing OER. In 1 M KOH solution, NiFeOOH(S,Se) achieves an ultra-low overpotential of 195 mV at the current density of 10 mA cm?2, and the Tafel slope is only 31.99 mV dec?1, showing excellent catalytic performance. When the current density is 100  mA cm?2, the over-potential of NiFeOOH(S,Se) in KOH + seawater solution is 239 mV, which is almost equivalent to 231 mV in KOH solution. The excellent OER stability of the NiFeOOH(S,Se) catalyst in alkaline electrolytes was confirmed, and the overpotential did not change significantly after 4 days of testing in KOH + seawater solution.  相似文献   
56.
Transition metal-based electrocatalysts supported on carbon substrates face the challenges of anodic corrosion of carbon during oxygen evolution reaction at high oxidation potential. The role of electrophilic functional groups (carbonyl, pyridinic, thiol, etc.) incorporated in graphene oxide has been studied towards the anodic corrosion resistance. Heteroatom functionalized carbon supports possess modified electronic properties, surface oxygen content, and hydrophilicity, which are crucial in governing electrochemical corrosion in the alkaline oxidative environment. Evidently, electron-withdrawing groups in NGO support (pyridinic, cyano, nitro, etc) and its lower oxygen content impart maximum corrosion resistance and anodic stability in comparison to the other sulfur-doped and co-doped graphene oxide support. In this report, we establish the baseline evaluation of carbon-supported OER electrocatalysts by a systematic analysis of activity and substrate corrosion resistance. The result of this study establishes the role of surface composition of the doped supports while for designing a stable, corrosion-resistant OER electrocatalyst.  相似文献   
57.
Developing inexpensive and efficient electrocatalysts for hydrogen evolution reaction (HER) in both acidic and alkaline mediums is of great significance to the hydrogen energy industry. Hereby, we prepared a mixture of precursors with homogeneous composition by using the chelating ability of soybean protein isolate (C and N source) and phytic acid (dopant and phosphating agent) with cobalt ions, and achieved one-step synthesis and construction of Co2P/N–P co-doped porous carbon composite by carbonization at 800 °C. The as-synthesized Co2P/NPPC-800 electrocatalyst exhibits low HER overpotentials of 121 and 125 mV at 10 mA cm?2 in 0.5 M H2SO4 and 1.0 M KOH, which are close to those of the commercial Pt/C catalyst. Additionally, the NPPC substrate surrounding the Co2P could diminish the corrosion during the HER, and Co2P/NPPC-800 displays good stability and durability. Furthermore, this work offers a convenient synthesis strategy for phosphide/doped porous carbon composites in other electrochemical energy technologies.  相似文献   
58.
Metal-organic frameworks (MOFs) have emerged as efficient electrocatalysts due to the features of high specific surface area, rich pore structure and diversified composition. It is still challenging to synthesize self-supporting MOF-based catalysts using simple and low-cost fabrication methods. Herein, we successfully fabricated Ni-doped MIL-53(Fe) supported on nickel-iron foam (Ni-MIL-53(Fe)/NFF) as efficient electrocatalyst. A facile two-step solvothermal method without adding any metal salts was used, which can simplify the fabrication process and reduce the experimental cost. In the fabrication process, the bimetallic Ni-MIL-53(Fe)/NFF was in situ converted from an intermediate NiFe2O4/NFF. The obtained material exhibits outstanding electrocatalytic oxygen evolution performance with a low overpotential of 248 mV at 50 mA cm?2, and a small Tafel slope of 46.4 mV dec?1. This work sheds light on the simple and efficient preparation of bimetallic MOF-based material, which is promising in electrocatalysts.  相似文献   
59.
The combination of inorganic (e.g., ferrite nanoparticles) and organic (e.g., conducting polymers) materials in the fabrication of heterojunctions or composites is an attractive scheme in the field of photocatalysis. We took the advantage of this phenomenon by fabricating MFerrite (M = Co, Ni, and Zn) @polypyrrole (MFerrite@Ppy) nanocomposites with a varying weight percentage of Ppy for the hydrogen production through photocatalytic water splitting under visible light irradiation. The structural, spectral, morphological, compositional, and optical features of the as-prepared nanocomposites were analyzed in full depth. The average crystallite sizes were estimated to be 30–40 nm from the XRD patterns which were further validated by TEM images from which a core-shell structure of the composites can be inferred. Likewise, the SEM images revealed spherical Ppy particles with a diameter in the range of 100–300 nm. From a photocatalytic viewpoint, CoFerrite@30Ppy is endowed with some peculiar characteristics including but not limited to strong light-harvesting ability (ranging between 300 and 650 nm), narrow optical band gap (as low as 1.6 eV), and higher photoluminescence (PL) lifetime (6.41 ns) which justify why it stands out among all composites in terms of photocatalysis. Under 8 h illumination of simulated visible light and using triethanolamine (TEOA) as a hole scavenger and Eosin-Y (EY) as a dye sensitizer, the photocatalytic hydrogen evolution (HER) amount for CoFerrite@30Ppy was found to be 10.44 mmol g?1, far greater than any other composite catalysts in this study. From the PL spectra, it can be pointed out that sensitization of CoFerrite with 30 wt % Ppy conduces to simultaneous deceleration of the electron-hole recombination process and acceleration of the transference of excitons within the system.  相似文献   
60.
Developing highly efficient and stable noble metal-free electrocatalysts with excellent catalytic surface for oxygen evolution reactions (OER) is an essential link for stimulating hydrogen generation from water electrolysis. Herein, the scalloped nickel/iron vanadium oxide coated vanadium dioxide (named as VO2@NFVO) has been successfully decorated via a urea-induced chemical etching-reconstruction process in the alkaline solution containing Fe2+ and Ni2+. Corresponding experimental measurements clearly show that favorable chemical etching occurs with the formation of new phases (eg, Ni3V2O8, FeVO4), which make it expose a large number of active sites and regulate the electron density of the active center, thus thereby dramatically enhancing the electrocatalytic performance by promoting electron transfer and optimizing the adsorption energy of reaction intermediates. Under optimized condition, the obtained VO2@NFVO delivers excellent activity merely with smaller overpotential of 290 mV at 10 mA cm?2, outperforming benchmark RuO2 catalyst in an alkaline solution. Moreover, its superior durability is verified by chronoamperometry testing. This simple etching-reconstruction strategy opens a new avenue for the preparation of vanadium-based electrocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号